Heterogeneous coefficients, control variables and identification of multiple treatment effects
نویسندگان
چکیده
Summary Multi-dimensional heterogeneity and endogeneity are important features of models with multiple treatments. We consider a heterogeneous coefficients model where the outcome is linear combination dummy treatment variables, each variable representing different kind treatment. use control variables to give necessary sufficient conditions for identification average effects. With mutually exclusive treatments we find that, provided mean independent from given controls, simple condition that generalized propensity scores (Imbens, 2000) be bounded away zero their sum one, probability one. Our analysis extends distributional quantile effects, as well corresponding effects on treated. These results generalize classical result Rosenbaum & Rubin (1983) binary
منابع مشابه
Heterogeneous Treatment Effects: Instrumental Variables without Monotonicity?
Heterogeneous Treatment Effects: Instrumental Variables without Monotonicity? A fundamental identification problem in program evaluation arises when idiosyncratic gains from participation and the treatment decision depend on each other. Imbens and Angrist (1994) were the first to exploit a monotonicity condition in order to identify an average treatment effect parameter using instrumental varia...
متن کاملexploring the relationship between iranian efl learners multiple intelligences, locus of control and reading proficiency
12 چکیده تفاوت های فردی، به عنوان خصوصیات روانشناختی غالب، باید در سطوح مختلف تدریس و یادگیری زبان کاملاً مورد ملاحظه قرار گیرند. از میان تاثیرگذارترین سازه های روانشناختی که منجر به تفاوت های فردی می شوند، می توان ازهوش چندگانه و منبع کنترل نام برد. هوش چندگانه با جنبه های متفاوتی از هوش سر و کار دارد که ممکن است هر شخص از آن برخوردار باشد. منبع کنترل، به عنوان مفهوم روانشناختی دیگر، به استن...
15 صفحه اولIdentification of homogeneous and heterogeneous variables in pooled cohort studies.
Pooled analyses integrate data from multiple studies and achieve a larger sample size for enhanced statistical power. When heterogeneity exists in variables' effects on the outcome across studies, the simple pooling strategy fails to present a fair and complete picture of the effects of heterogeneous variables. Thus, it is important to investigate the homogeneous and heterogeneous structure of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrika
سال: 2021
ISSN: ['0006-3444', '1464-3510']
DOI: https://doi.org/10.1093/biomet/asab060